arXiv Analytics

Sign in

arXiv:math/0503304 [math.NT]AbstractReferencesReviewsResources

On a number of rational points on a convex curve

Fedor V. Petrov

Published 2005-03-15Version 1

Let $\gamma$ be a bounded convex curve on a plane. Then $\sharp (\gamma\cap (\Z/n)^2)=o(n^{2/3})$. It streghtens the classical result of Jarn\'\i k (an upper estimate $O(n^{2/3})$) and disproves a conjecture of Vershik on existence of the so-called {\it universal Jarn\'\i k curve}.

Comments: 8 pages, submitted to FAA
Categories: math.NT, math.MG
Subjects: 11H06
Related articles: Most relevant | Search more
arXiv:math/0608085 [math.NT] (Published 2006-08-03, updated 2007-01-26)
On a conjecture of Wilf
arXiv:1305.1017 [math.NT] (Published 2013-05-05, updated 2013-05-08)
On a conjecture of Dekking : The sum of digits of even numbers
arXiv:1211.7206 [math.NT] (Published 2012-11-30)
A Conjecture Connected with Units of Quadratic Fields