{ "id": "math/0503304", "version": "v1", "published": "2005-03-15T15:48:47.000Z", "updated": "2005-03-15T15:48:47.000Z", "title": "On a number of rational points on a convex curve", "authors": [ "Fedor V. Petrov" ], "comment": "8 pages, submitted to FAA", "categories": [ "math.NT", "math.MG" ], "abstract": "Let $\\gamma$ be a bounded convex curve on a plane. Then $\\sharp (\\gamma\\cap (\\Z/n)^2)=o(n^{2/3})$. It streghtens the classical result of Jarn\\'\\i k (an upper estimate $O(n^{2/3})$) and disproves a conjecture of Vershik on existence of the so-called {\\it universal Jarn\\'\\i k curve}.", "revisions": [ { "version": "v1", "updated": "2005-03-15T15:48:47.000Z" } ], "analyses": { "subjects": [ "11H06" ], "keywords": [ "rational points", "bounded convex curve", "upper estimate", "classical result", "conjecture" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3304P" } } }