arXiv Analytics

Sign in

arXiv:math/0410554 [math.AG]AbstractReferencesReviewsResources

Higher degree Galois covers of CP^1 x T

Meirav Amram, David Goldberg

Published 2004-10-26Version 1

Let T be a complex torus, and X the surface CP^1 x T. If T is embedded in CP^{n-1} then X may be embedded in CP^{2n-1}. Let X_Gal be its Galois cover with respect to a generic projection to CP^2. In this paper we compute the fundamental group of X_Gal, using the degeneration and regeneration techniques, the Moishezon-Teicher braid monodromy algorithm and group calculations. We show that pi_1(X_Gal) = Z^{4n-2}.

Comments: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-37.abs.html
Journal: Algebr. Geom. Topol. 4 (2004) 841-859
Categories: math.AG, math.GT
Subjects: 14Q10, 14J80, 32Q55
Related articles: Most relevant | Search more
arXiv:math/0205272 [math.AG] (Published 2002-05-26)
The fundamental group of a Galois cover of CP^1 X T
arXiv:math/0010105 [math.AG] (Published 2000-10-11, updated 2000-11-27)
Fundamental groups of line arrangements: Enumerative aspects
arXiv:0803.3005 [math.AG] (Published 2008-03-20, updated 2008-12-22)
Fundamental group for the complement of the Cayley's singularities