{ "id": "math/0410554", "version": "v1", "published": "2004-10-26T12:46:19.000Z", "updated": "2004-10-26T12:46:19.000Z", "title": "Higher degree Galois covers of CP^1 x T", "authors": [ "Meirav Amram", "David Goldberg" ], "comment": "Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-37.abs.html", "journal": "Algebr. Geom. Topol. 4 (2004) 841-859", "categories": [ "math.AG", "math.GT" ], "abstract": "Let T be a complex torus, and X the surface CP^1 x T. If T is embedded in CP^{n-1} then X may be embedded in CP^{2n-1}. Let X_Gal be its Galois cover with respect to a generic projection to CP^2. In this paper we compute the fundamental group of X_Gal, using the degeneration and regeneration techniques, the Moishezon-Teicher braid monodromy algorithm and group calculations. We show that pi_1(X_Gal) = Z^{4n-2}.", "revisions": [ { "version": "v1", "updated": "2004-10-26T12:46:19.000Z" } ], "analyses": { "subjects": [ "14Q10", "14J80", "32Q55" ], "keywords": [ "higher degree galois covers", "moishezon-teicher braid monodromy algorithm", "regeneration techniques", "fundamental group", "complex torus" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }