arXiv Analytics

Sign in

arXiv:math/0408022 [math.NT]AbstractReferencesReviewsResources

The moments of the Riemann zeta-function. Part I: The fourth moment off the critical line

Aleksandar Ivić, Yoichi Motohashi

Published 2004-08-02Version 1

In this paper, the first part of a larger work, we prove the spectral decomposition of $$ \int_{-\infty}^\infty|\zeta(\s+it)|^4g(t){\rm d}t\qquad(\hf < \sigma < 1 {\rm {fixed}}), $$ where $g(t)$ is a suitable weight function of fast decay. This is used to obtain estimates and omega results for the function $$\eqalign{E_2(T,\sigma) &: =\int_0^T|\zeta(\sigma+it)|^4{rm d}t - {\zeta^4(2\sigma)\over\zeta(4\sigma)}T -{T\over3-4\sigma}{({T\over2\pi} )}^{2-4\sigma}{\zeta^4(2-2\sigma)\over\zeta(4-4\sigma)}\cr& - T^{2-2\sigma}(a_0(\sigma) + a_1(\sigma)\log T + a_2(\sigma)\log^2T),\cr} $$ the error term in the asymptotic formula for the fourth moment of $|\zeta(\sigma+it)|$.

Comments: 50 pages
Journal: Functiones et Approximatio 35(2006), 133-181.
Categories: math.NT
Subjects: 11M06, 11F72, 11F66
Related articles: Most relevant | Search more
arXiv:math/0312117 [math.NT] (Published 2003-12-05)
The fourth moment of the zeta-function
arXiv:math/0312097 [math.NT] (Published 2003-12-04)
On small values of the Riemann zeta-function on the critical line and gaps between zeros
arXiv:math/0701202 [math.NT] (Published 2007-01-07, updated 2007-01-21)
On the Riemann zeta-function and the divisor problem IV