{ "id": "math/0408022", "version": "v1", "published": "2004-08-02T14:58:31.000Z", "updated": "2004-08-02T14:58:31.000Z", "title": "The moments of the Riemann zeta-function. Part I: The fourth moment off the critical line", "authors": [ "Aleksandar Ivić", "Yoichi Motohashi" ], "comment": "50 pages", "journal": "Functiones et Approximatio 35(2006), 133-181.", "categories": [ "math.NT" ], "abstract": "In this paper, the first part of a larger work, we prove the spectral decomposition of $$ \\int_{-\\infty}^\\infty|\\zeta(\\s+it)|^4g(t){\\rm d}t\\qquad(\\hf < \\sigma < 1 {\\rm {fixed}}), $$ where $g(t)$ is a suitable weight function of fast decay. This is used to obtain estimates and omega results for the function $$\\eqalign{E_2(T,\\sigma) &: =\\int_0^T|\\zeta(\\sigma+it)|^4{rm d}t - {\\zeta^4(2\\sigma)\\over\\zeta(4\\sigma)}T -{T\\over3-4\\sigma}{({T\\over2\\pi} )}^{2-4\\sigma}{\\zeta^4(2-2\\sigma)\\over\\zeta(4-4\\sigma)}\\cr& - T^{2-2\\sigma}(a_0(\\sigma) + a_1(\\sigma)\\log T + a_2(\\sigma)\\log^2T),\\cr} $$ the error term in the asymptotic formula for the fourth moment of $|\\zeta(\\sigma+it)|$.", "revisions": [ { "version": "v1", "updated": "2004-08-02T14:58:31.000Z" } ], "analyses": { "subjects": [ "11M06", "11F72", "11F66" ], "keywords": [ "fourth moment", "riemann zeta-function", "critical line", "first part", "asymptotic formula" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......8022I" } } }