arXiv:math/0406256 [math.DS]AbstractReferencesReviewsResources
Hyperbolic Components in Exponential Parameter Space
Published 2004-06-13Version 1
We discuss the space of complex exponential maps $\Ek\colon z\mapsto e^{z}+\kappa$. We prove that every hyperbolic component $W$ has connected boundary, and there is a conformal isomorphism $\Phi_W\colon W\to\half^-$ which extends to a homeomorphism of pairs $\Phi_W\colon(\ovl W,W)\to(\ovl\half^-,\half^-)$. This solves a conjecture of Baker and Rippon, and of Eremenko and Lyubich, in the affirmative. We also prove a second conjecture of Eremenko and Lyubich.
Comments: To appear in: Comptes Rendues Acad Sci Paris.-- Detailed description of results can be found in ArXiv math.DS/0311480.-- 6 pages, 1 figure
Journal: Comptes Rendus Mathematiques 339/3 (2004) 223-228
Categories: math.DS
Keywords: exponential parameter space, hyperbolic component, complex exponential maps, second conjecture, conformal isomorphism
Tags: journal article
Related articles: Most relevant | Search more
Bifurcations in the Space of Exponential Maps
Combinatorics of Bifurcations in Exponential Parameter Space
arXiv:math/9202210 [math.DS] (Published 1992-02-22)
Hyperbolic components in spaces of polynomial maps