{ "id": "math/0406256", "version": "v1", "published": "2004-06-13T22:24:28.000Z", "updated": "2004-06-13T22:24:28.000Z", "title": "Hyperbolic Components in Exponential Parameter Space", "authors": [ "Dierk Schleicher" ], "comment": "To appear in: Comptes Rendues Acad Sci Paris.-- Detailed description of results can be found in ArXiv math.DS/0311480.-- 6 pages, 1 figure", "journal": "Comptes Rendus Mathematiques 339/3 (2004) 223-228", "doi": "10.1016/j.crma.2004.05.014", "categories": [ "math.DS" ], "abstract": "We discuss the space of complex exponential maps $\\Ek\\colon z\\mapsto e^{z}+\\kappa$. We prove that every hyperbolic component $W$ has connected boundary, and there is a conformal isomorphism $\\Phi_W\\colon W\\to\\half^-$ which extends to a homeomorphism of pairs $\\Phi_W\\colon(\\ovl W,W)\\to(\\ovl\\half^-,\\half^-)$. This solves a conjecture of Baker and Rippon, and of Eremenko and Lyubich, in the affirmative. We also prove a second conjecture of Eremenko and Lyubich.", "revisions": [ { "version": "v1", "updated": "2004-06-13T22:24:28.000Z" } ], "analyses": { "subjects": [ "30D05", "37F10", "37F15", "37F20", "37F45" ], "keywords": [ "exponential parameter space", "hyperbolic component", "complex exponential maps", "second conjecture", "conformal isomorphism" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6256S" } } }