arXiv:math/0311403 [math.NT]AbstractReferencesReviewsResources
On mean values of some zeta-functions in the critical strip
Published 2003-11-23Version 1
For a fixed integer $k\ge 3$ and fixed $1/2 < \sigma > 1$ we consider $$ \int_1^T |\zeta(\sigma + it)|^{2k}dt = \sum_{n=1}^\infty d_k^2(n)n^{-2\sigma}T + R(k,\sigma;T), $$ where $R(k,\sigma;T) = o(T) (T\to\infty)$ is the error term in the above asymptotic formula. Hitherto the sharpest bounds for $R(k,\sigma;T)$ are given for certain ranges of $\sigma$. We also obtain new mean value results for the zeta-functions of holomorphic cusp forms and the Rankin-Selberg series.
Comments: To the memory of R.A. Rankin, 15 pages
Journal: Journal de Th\'eorie des Nombres de Bordeaux 15(2003), 163-178
Categories: math.NT
Keywords: critical strip, zeta-functions, mean value results, holomorphic cusp forms, sharpest bounds
Tags: journal article
Related articles: Most relevant | Search more
Distribution of values of $L$-functions at the edge of the critical strip
arXiv:1502.00406 [math.NT] (Published 2015-02-02)
On some mean value results for the zeta-function and a divisor problem II
arXiv:1305.2028 [math.NT] (Published 2013-05-09)
On some mean value results for the zeta-function in short intervals