{ "id": "math/0311403", "version": "v1", "published": "2003-11-23T11:45:03.000Z", "updated": "2003-11-23T11:45:03.000Z", "title": "On mean values of some zeta-functions in the critical strip", "authors": [ "Aleksandar Ivić" ], "comment": "To the memory of R.A. Rankin, 15 pages", "journal": "Journal de Th\\'eorie des Nombres de Bordeaux 15(2003), 163-178", "categories": [ "math.NT" ], "abstract": "For a fixed integer $k\\ge 3$ and fixed $1/2 < \\sigma > 1$ we consider $$ \\int_1^T |\\zeta(\\sigma + it)|^{2k}dt = \\sum_{n=1}^\\infty d_k^2(n)n^{-2\\sigma}T + R(k,\\sigma;T), $$ where $R(k,\\sigma;T) = o(T) (T\\to\\infty)$ is the error term in the above asymptotic formula. Hitherto the sharpest bounds for $R(k,\\sigma;T)$ are given for certain ranges of $\\sigma$. We also obtain new mean value results for the zeta-functions of holomorphic cusp forms and the Rankin-Selberg series.", "revisions": [ { "version": "v1", "updated": "2003-11-23T11:45:03.000Z" } ], "analyses": { "subjects": [ "11M06", "11F30", "11F66" ], "keywords": [ "critical strip", "zeta-functions", "mean value results", "holomorphic cusp forms", "sharpest bounds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11403I" } } }