arXiv:math/0311281 [math.RT]AbstractReferencesReviewsResources
Rejective subcategories of artin algebras and orders
Published 2003-11-17Version 1
We will study the resolution dimension of functorially finite subcategories. The subcategories with the resolution dimension zero correspond to ring epimorphisms, and rejective subcategories correspond to surjective ring morphisms. We will study a chain of rejective subcategories to construct modules with endomorphisms rings of finite global dimension. We apply these result to study a function $r_\Lambda:\mod\Lambda\to\nnn_{\ge0}$ which is a natural extension of Auslander's representation dimension.
Comments: 43 pages
Related articles: Most relevant | Search more
arXiv:1703.08725 [math.RT] (Published 2017-03-25)
Homological behavior of idempotent subalgebras and Ext algebras
arXiv:1905.04908 [math.RT] (Published 2019-05-13)
Cycle-finite modules over artin algebras
arXiv:1209.2093 [math.RT] (Published 2012-09-10)
Algebras of finite global dimension