{ "id": "math/0311281", "version": "v1", "published": "2003-11-17T12:40:15.000Z", "updated": "2003-11-17T12:40:15.000Z", "title": "Rejective subcategories of artin algebras and orders", "authors": [ "Osamu Iyama" ], "comment": "43 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "We will study the resolution dimension of functorially finite subcategories. The subcategories with the resolution dimension zero correspond to ring epimorphisms, and rejective subcategories correspond to surjective ring morphisms. We will study a chain of rejective subcategories to construct modules with endomorphisms rings of finite global dimension. We apply these result to study a function $r_\\Lambda:\\mod\\Lambda\\to\\nnn_{\\ge0}$ which is a natural extension of Auslander's representation dimension.", "revisions": [ { "version": "v1", "updated": "2003-11-17T12:40:15.000Z" } ], "analyses": { "subjects": [ "16E10", "16G10", "16G30" ], "keywords": [ "rejective subcategories", "artin algebras", "resolution dimension zero correspond", "auslanders representation dimension", "finite global dimension" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11281I" } } }