arXiv:math/0311030 [math.NT]AbstractReferencesReviewsResources
A lower bound for the height of a rational function at $S$-unit points
Pietro Corvaja, Umberto Zannier
Published 2003-11-04, updated 2004-04-22Version 2
Let $\Gamma$ be a finitely generated subgroup of the multiplicative group $\G_m^2(\bar{Q})$. Let $p(X,Y),q(X,Y)\in\bat{Q}$ be two coprime polynomials not both vanishing at $(0,0)$; let $\epsilon>0$. We prove that, for all $(u,v)\in\Gamma$ outside a proper Zariski closed subset of $G_m^2$, the height of $p(u,v)/q(u,v)$ verifies $h(p(u,v)/q(u,v))>h(1:p(u,v):q(u,v))-\epsilon \max(h(uu),h(v))$. As a consequence, we deduce upper bounds for (a generalized notion of) the g.c.d. of $u-1,v-1$ for $u,v$ running over $\Gamma$.
Comments: Plain TeX 18 pages. Version 2; minor changes. To appear on Monatshefte fuer Mathematik
Categories: math.NT
Subjects: 11J25
Related articles: Most relevant | Search more
Lower bounds for sumsets of multisets in Z_p^2
A lower bound for periods of matrices
arXiv:1505.04975 [math.NT] (Published 2015-05-19)
On the lower bound of the discrepancy of $(t,s)$ sequences: II