{ "id": "math/0311030", "version": "v2", "published": "2003-11-04T10:50:44.000Z", "updated": "2004-04-22T09:21:03.000Z", "title": "A lower bound for the height of a rational function at $S$-unit points", "authors": [ "Pietro Corvaja", "Umberto Zannier" ], "comment": "Plain TeX 18 pages. Version 2; minor changes. To appear on Monatshefte fuer Mathematik", "categories": [ "math.NT" ], "abstract": "Let $\\Gamma$ be a finitely generated subgroup of the multiplicative group $\\G_m^2(\\bar{Q})$. Let $p(X,Y),q(X,Y)\\in\\bat{Q}$ be two coprime polynomials not both vanishing at $(0,0)$; let $\\epsilon>0$. We prove that, for all $(u,v)\\in\\Gamma$ outside a proper Zariski closed subset of $G_m^2$, the height of $p(u,v)/q(u,v)$ verifies $h(p(u,v)/q(u,v))>h(1:p(u,v):q(u,v))-\\epsilon \\max(h(uu),h(v))$. As a consequence, we deduce upper bounds for (a generalized notion of) the g.c.d. of $u-1,v-1$ for $u,v$ running over $\\Gamma$.", "revisions": [ { "version": "v2", "updated": "2004-04-22T09:21:03.000Z" } ], "analyses": { "subjects": [ "11J25" ], "keywords": [ "rational function", "unit points", "lower bound", "proper zariski closed subset", "deduce upper bounds" ], "note": { "typesetting": "Plain TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11030C" } } }