arXiv:math/0307095 [math.NT]AbstractReferencesReviewsResources
Problème de Lehmer pour les hypersurfaces de variétés abéliennes de type C.M
Published 2003-07-08Version 1
We obtain a lower bound for the normalised height of a non-torsion hypersurface $V$ of a C.M. abelian variety $A$ which is a refinement of a precedent result. This lower bound is optimal in terms of the geometric degree of $V$, up to an absolute power of a ``log'' (independant of the dimension of $A$). We thus extend the results of F. Amoroso and S. David on the same problem on a multiplicative group $\mathbb{G}_m^n$. When $A$ is an elliptic curve and $V=\bar{P}$ is the set of conjugates of a non torsion $\bar{k}$-point, we reobtain the result of M. Laurent on the elliptic Lehmer's problem.
Related articles: Most relevant | Search more
Intersection de courbes et de sous-groupes, et problèmes de minoration de hauteur dans les variétés abéliennes C.M
Remarques sur une conjecture de Lang
A lower bound for periods of matrices