{ "id": "math/0307095", "version": "v1", "published": "2003-07-08T16:21:39.000Z", "updated": "2003-07-08T16:21:39.000Z", "title": "Problème de Lehmer pour les hypersurfaces de variétés abéliennes de type C.M", "authors": [ "Nicolas Ratazzi" ], "comment": "23 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We obtain a lower bound for the normalised height of a non-torsion hypersurface $V$ of a C.M. abelian variety $A$ which is a refinement of a precedent result. This lower bound is optimal in terms of the geometric degree of $V$, up to an absolute power of a ``log'' (independant of the dimension of $A$). We thus extend the results of F. Amoroso and S. David on the same problem on a multiplicative group $\\mathbb{G}_m^n$. When $A$ is an elliptic curve and $V=\\bar{P}$ is the set of conjugates of a non torsion $\\bar{k}$-point, we reobtain the result of M. Laurent on the elliptic Lehmer's problem.", "revisions": [ { "version": "v1", "updated": "2003-07-08T16:21:39.000Z" } ], "analyses": { "subjects": [ "11G50", "14G40", "14K12", "14K22" ], "keywords": [ "variétés abéliennes", "lehmer pour", "lower bound", "elliptic lehmers problem", "non torsion" ], "tags": [ "journal article" ], "publication": { "doi": "10.4064/aa113-3-5", "journal": "Acta Arithmetica", "year": 2004, "volume": 113, "number": 3, "pages": 273 }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004AcAri.113..273R" } } }