arXiv:math/0305179 [math.NT]AbstractReferencesReviewsResources
A mean value result involving the fourth moment of $|ζ(1/2+it)|$
Published 2003-05-13, updated 2003-11-10Version 3
If $(k,\ell)$ is an exponent pair such that $k+\ell<1$, then we have $$ \int_1^T|\zeta(1/2+it)|^4|\zeta(\sigma+it)|^2dt \ll_\epsilon T^{1+\epsilon}\quad(\sigma > \min({5\over6},\max(\ell-k, {5k+\ell\over4k+1})), $$ while if $(k,\ell)$ is an exponent pair such that $3k+\ell<1$, then we have $$ \int_1^T|\zeta(1/2+it)|^4|\zeta(\sigma+it)|^4dt \ll_\epsilon T^{1+\epsilon}\quad(\sigma > {11k+\ell+1\over8k+2}). $$
Comments: 9 pages, only TeX formatting corrected
Journal: Annales Univ. Sci. Budapest, Sect. Computatorica 23(2004), 47-58
Categories: math.NT
Subjects: 11M06
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0312117 [math.NT] (Published 2003-12-05)
The fourth moment of the zeta-function
arXiv:math/0408022 [math.NT] (Published 2004-08-02)
The moments of the Riemann zeta-function. Part I: The fourth moment off the critical line
arXiv:2008.13407 [math.NT] (Published 2020-08-31)
The fourth moment of Dirichlet $L$-functions at the central value