arXiv Analytics

Sign in

arXiv:math/0305140 [math.DG]AbstractReferencesReviewsResources

Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length

Andrei Moroianu, Liviu Ornea

Published 2003-05-09, updated 2010-05-06Version 2

We prove that on a compact $n$-dimensional spin manifold admitting a non-trivial harmonic 1-form of constant length, every eigenvalue $\lambda$ of the Dirac operator satisfies the inequality $\lambda^2 \geq \frac{n-1}{4(n-2)}\inf_M Scal$. In the limiting case the universal cover of the manifold is isometric to $R\times N$ where $N$ is a manifold admitting Killing spinors.

Journal: C. R. Math. Acad. Sci. Paris 338 (2004), 561-564
Categories: math.DG
Subjects: 53C27, 58B40
Related articles: Most relevant | Search more
arXiv:math/0103095 [math.DG] (Published 2001-03-15)
On eigenvalue estimates for the Dirac operator
arXiv:2107.12982 [math.DG] (Published 2021-07-27)
Eigenvalue estimates for 3-Sasaki structures
arXiv:1810.08281 [math.DG] (Published 2018-10-18)
Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates