{ "id": "math/0305140", "version": "v2", "published": "2003-05-09T14:08:47.000Z", "updated": "2010-05-06T12:45:51.000Z", "title": "Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length", "authors": [ "Andrei Moroianu", "Liviu Ornea" ], "journal": "C. R. Math. Acad. Sci. Paris 338 (2004), 561-564", "doi": "10.1016/j.crma.2004.01.030", "categories": [ "math.DG" ], "abstract": "We prove that on a compact $n$-dimensional spin manifold admitting a non-trivial harmonic 1-form of constant length, every eigenvalue $\\lambda$ of the Dirac operator satisfies the inequality $\\lambda^2 \\geq \\frac{n-1}{4(n-2)}\\inf_M Scal$. In the limiting case the universal cover of the manifold is isometric to $R\\times N$ where $N$ is a manifold admitting Killing spinors.", "revisions": [ { "version": "v2", "updated": "2010-05-06T12:45:51.000Z" } ], "analyses": { "subjects": [ "53C27", "58B40" ], "keywords": [ "constant length", "eigenvalue estimates", "dirac operator satisfies", "non-trivial harmonic", "dimensional spin manifold admitting" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5140M" } } }