arXiv Analytics

Sign in

arXiv:math/0303173 [math.AG]AbstractReferencesReviewsResources

D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras

E. Frenkel, D. Gaitsgory

Published 2003-03-13, updated 2004-01-15Version 3

Let ${\mathfrak g}$ be a simple Lie algebra. For a level $\kappa$ (thought of as a symmetric ${\mathfrak g}$-invariant form of ${\mathfrak g}$), let $\hat{\mathfrak g}_\kappa$ be the corresponding affine Kac-Moody algebra. Let $Gr_G$ be the affine Grassmannian of ${\mathfrak g}$, and let $D_\kappa(Gr_G)-mod$ be the category of $\kappa$-twisted right D-modules on $Gr_G$. By taking global sections of a D-module, we obtain a functor $\Gamma:D_\kappa(Gr_G)-mod\to {\mathfrak g}_\kappa-mod$. It is known that this functor is exact and faithful when $\kappa$ is negative or irrational. In this paper, we show that the functor $\Gamma$ is exact and faithful also when $\kappa$ is the critical level.

Comments: Revised version; to appear in Duke Math. Journal
Categories: math.AG
Related articles: Most relevant | Search more
arXiv:math/9909077 [math.AG] (Published 1999-09-14, updated 2000-02-25)
Crystals via the affine Grassmannian
arXiv:math/0301091 [math.AG] (Published 2003-01-09, updated 2004-10-20)
Matsuki correspondence for the affine Grassmannian
arXiv:1202.0987 [math.AG] (Published 2012-02-05, updated 2015-09-17)
The $ΞΎ$-stability on the affine grassmannian