{ "id": "math/0303173", "version": "v3", "published": "2003-03-13T19:50:11.000Z", "updated": "2004-01-15T19:22:04.000Z", "title": "D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras", "authors": [ "E. Frenkel", "D. Gaitsgory" ], "comment": "Revised version; to appear in Duke Math. Journal", "categories": [ "math.AG" ], "abstract": "Let ${\\mathfrak g}$ be a simple Lie algebra. For a level $\\kappa$ (thought of as a symmetric ${\\mathfrak g}$-invariant form of ${\\mathfrak g}$), let $\\hat{\\mathfrak g}_\\kappa$ be the corresponding affine Kac-Moody algebra. Let $Gr_G$ be the affine Grassmannian of ${\\mathfrak g}$, and let $D_\\kappa(Gr_G)-mod$ be the category of $\\kappa$-twisted right D-modules on $Gr_G$. By taking global sections of a D-module, we obtain a functor $\\Gamma:D_\\kappa(Gr_G)-mod\\to {\\mathfrak g}_\\kappa-mod$. It is known that this functor is exact and faithful when $\\kappa$ is negative or irrational. In this paper, we show that the functor $\\Gamma$ is exact and faithful also when $\\kappa$ is the critical level.", "revisions": [ { "version": "v3", "updated": "2004-01-15T19:22:04.000Z" } ], "analyses": { "keywords": [ "affine grassmannian", "representations", "simple lie algebra", "corresponding affine kac-moody algebra", "invariant form" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......3173F" } } }