arXiv Analytics

Sign in

arXiv:math/0210329 [math.NT]AbstractReferencesReviewsResources

Diophantine equations in two variables

Minhyong Kim

Published 2002-10-21Version 1

This is an expository lecture on the subject of the title delivered at the Park-IAS mathematical institute in Princeton (July, 2000).

Comments: Not for separate publication
Categories: math.NT
Subjects: 11D00
Related articles: Most relevant | Search more
arXiv:1701.02604 [math.NT] (Published 2017-01-06)
On the Diophantine equations $ \sum_{i=1}^n a_ix_{i} ^6+\sum_{i=1}^m b_iy_{i} ^3= \sum_{i=1}^na_iX_{i}^6\pm\sum_{i=1}^m b_iY_{i} ^3 $
arXiv:2106.12019 [math.NT] (Published 2021-06-22)
Length-Preserving Directions and Some Diophantine Equations
arXiv:1305.6242 [math.NT] (Published 2013-05-27)
Rational solutions of certain Diophantine equations involving norms