arXiv:1701.02604 [math.NT]AbstractReferencesReviewsResources
On the Diophantine equations $ \sum_{i=1}^n a_ix_{i} ^6+\sum_{i=1}^m b_iy_{i} ^3= \sum_{i=1}^na_iX_{i}^6\pm\sum_{i=1}^m b_iY_{i} ^3 $
Farzali Izadi, Mehdi Baghalagdam
Published 2017-01-06Version 1
In this paper, the elliptic curves theory is used for solving the Diophantine equations $\sum_{i=1}^n a_ix_{i} ^6+\sum_{i=1}^m b_iy_{i} ^3= \sum_{i=1}^na_iX_{i}^6\pm\sum_{i=1}^m b_iY_{i} ^3$, where $n$, $m$ $\geq 1$ and $a_i$, $b_i$, are fixed arbitrary nonzero integers. By our method, we may find infinitely many nontrivial positive solutions and also obtain infinitely many nontrivial parametric solutions for the Diophantine equations for every arbitrary integers $n$, $m$, $a_i$ and $b_i$.
Comments: 9 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1702.08500 [math.NT] (Published 2017-02-15)
On the Diophantine equations X^3+Y^3+Z^3+aU^k=a_0U_0^{t_0}+...+a_nU_n^{t_n}, k=3,4
arXiv:1607.01588 [math.NT] (Published 2016-07-06)
Diophantine equations in moderately many variables
arXiv:2409.09791 [math.NT] (Published 2024-09-15)
On the Diophantine Equations $J_n +J_m =L_k$ and $L_n +L_m =J_k$