arXiv:math/0209074 [math.GN]AbstractReferencesReviewsResources
On finite-dimensional maps
Published 2002-09-06Version 1
Let $f\colon X\to Y$ be a perfect surjective map of metrizable spaces. It is shown that if $Y$ is a $C$-space (resp., $\dim Y\leq n$ and $\dim f\leq m$), then the function space $C(X,\uin^{\infty})$ (resp., $C(X,\uin^{2n+1+m})$) equipped with the source limitation topology contains a dense $G_{\delta}$-set $\mathcal{H}$ such that $f\times g$ embeds $X$ into $Y\times\uin^{\infty}$ (resp., into $Y\times\uin^{2n+1+m}$) for every $g\in\mathcal{H}$. Some applications of this result are also given.
Comments: 11 pages
Categories: math.GN
Related articles: Most relevant | Search more
On Finite-Dimensional Maps II
On Regularly Branched Maps
arXiv:1401.4146 [math.GN] (Published 2014-01-16)
Independence of the metric in the fine $C^0$-topology of a function space