{ "id": "math/0209074", "version": "v1", "published": "2002-09-06T20:56:07.000Z", "updated": "2002-09-06T20:56:07.000Z", "title": "On finite-dimensional maps", "authors": [ "H. Murat Tuncali", "Vesko Valov" ], "comment": "11 pages", "categories": [ "math.GN" ], "abstract": "Let $f\\colon X\\to Y$ be a perfect surjective map of metrizable spaces. It is shown that if $Y$ is a $C$-space (resp., $\\dim Y\\leq n$ and $\\dim f\\leq m$), then the function space $C(X,\\uin^{\\infty})$ (resp., $C(X,\\uin^{2n+1+m})$) equipped with the source limitation topology contains a dense $G_{\\delta}$-set $\\mathcal{H}$ such that $f\\times g$ embeds $X$ into $Y\\times\\uin^{\\infty}$ (resp., into $Y\\times\\uin^{2n+1+m}$) for every $g\\in\\mathcal{H}$. Some applications of this result are also given.", "revisions": [ { "version": "v1", "updated": "2002-09-06T20:56:07.000Z" } ], "analyses": { "subjects": [ "54F45", "55M10" ], "keywords": [ "finite-dimensional maps", "source limitation topology contains", "function space", "perfect surjective map", "metrizable spaces" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9074M" } } }