arXiv:math/0208219 [math.AG]AbstractReferencesReviewsResources
On a stratification defined by real roots of polynomials
Published 2002-08-28, updated 2002-09-02Version 2
We consider the family of polynomials $P(x,a)=x^n+a_1x^{n-1}+... +a_n$, $x,a_i\in {\bf R}$, and the stratification of ${\bf R}^n\cong \{(a_1,... ,a_n)|a_i\in {\bf R}\}$ defined by the multiplicity vector of the real roots of $P$. We prove smoothness of the strata and a transversality property of their tangent spaces.
Related articles: Most relevant | Search more
arXiv:math/9911104 [math.AG] (Published 1999-11-15)
Algorithms for polynomials in two variables
arXiv:2301.05078 [math.AG] (Published 2023-01-12)
Stratification des variétés de Hilbert en présence de ramification
arXiv:1703.02703 [math.AG] (Published 2017-03-08)
A stratification of Hilbert schemes via generic initial ideals