{ "id": "math/0208219", "version": "v2", "published": "2002-08-28T14:15:00.000Z", "updated": "2002-09-02T14:26:35.000Z", "title": "On a stratification defined by real roots of polynomials", "authors": [ "Vladimir Petrov Kostov" ], "journal": "Serdica Math. J. 29, No. 2 (2003), 177-186", "categories": [ "math.AG" ], "abstract": "We consider the family of polynomials $P(x,a)=x^n+a_1x^{n-1}+... +a_n$, $x,a_i\\in {\\bf R}$, and the stratification of ${\\bf R}^n\\cong \\{(a_1,... ,a_n)|a_i\\in {\\bf R}\\}$ defined by the multiplicity vector of the real roots of $P$. We prove smoothness of the strata and a transversality property of their tangent spaces.", "revisions": [ { "version": "v2", "updated": "2002-09-02T14:26:35.000Z" } ], "analyses": { "keywords": [ "real roots", "stratification", "polynomials", "multiplicity vector" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......8219P" } } }