arXiv:math/0204131 [math.GN]AbstractReferencesReviewsResources
Compactification of a map which is mapped to itself
A. Iwanik, L. Janos, F. A. Smith
Published 2002-04-10Version 1
We prove that if $T: X \to X$ is a selfmap of a set $X$ such that $\bigcap \{T^{n}X: n\in N}\}$ is a one-point set, then the set $X$ can be endowed with a compact Hausdorff topology so that $T$ is continuous.
Comments: 5 pages
Journal: Proceedings of the Ninth Prague Topological Symposium, (Prague, 2001), pp. 165--169, Topology Atlas, Toronto, 2002
Categories: math.GN
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1607.03826 [math.GN] (Published 2016-07-13)
Absoluteness of $F_{σδ}$ property
arXiv:1906.08498 [math.GN] (Published 2019-06-20)
A T_0 Compactification Of A Tychonoff Space Using The Rings Of Baire One Functions
arXiv:1909.10646 [math.GN] (Published 2019-09-23)
Compactification of cut-point spaces