{ "id": "math/0204131", "version": "v1", "published": "2002-04-10T17:40:24.000Z", "updated": "2002-04-10T17:40:24.000Z", "title": "Compactification of a map which is mapped to itself", "authors": [ "A. Iwanik", "L. Janos", "F. A. Smith" ], "comment": "5 pages", "journal": "Proceedings of the Ninth Prague Topological Symposium, (Prague, 2001), pp. 165--169, Topology Atlas, Toronto, 2002", "categories": [ "math.GN" ], "abstract": "We prove that if $T: X \\to X$ is a selfmap of a set $X$ such that $\\bigcap \\{T^{n}X: n\\in N}\\}$ is a one-point set, then the set $X$ can be endowed with a compact Hausdorff topology so that $T$ is continuous.", "revisions": [ { "version": "v1", "updated": "2002-04-10T17:40:24.000Z" } ], "analyses": { "subjects": [ "54H20", "54H25" ], "keywords": [ "compactification", "compact hausdorff topology", "one-point set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4131I" } } }