arXiv Analytics

Sign in

arXiv:math/0202041 [math.RT]AbstractReferencesReviewsResources

Representations of n-Lie algebras

A. S. Dzhumadil'daev

Published 2002-02-05Version 1

Let $V_n=<e_1,...,e_{n+1}>$ be a vector products n-Lie algebra with n-Lie commutator $[e_1,...,\hat{e_i},...,e_{n+1}]=(-1)^ie_i$ over the field of complex numbers. Any finite-dimensional n-Lie $V_n$-module is completely reducible. Any finite-dimensional irreducible n-Lie $V_n$-module is isomorphic to a n-Lie extension of $so_{n+1}$-module with highest weight $t\pi_1$ for some nonnegative integer t.

Related articles: Most relevant | Search more
arXiv:1202.0066 [math.RT] (Published 2012-02-01)
A new interpretation of the Racah-Wigner $6j$-symbol and the classification of uniserial $sl(2)\ltimes V(m)$-modules
arXiv:0812.2238 [math.RT] (Published 2008-12-11, updated 2009-07-24)
Restricted limits of minimal affinizations
arXiv:2010.16383 [math.RT] (Published 2020-10-30)
Limit shape for infinite rank limit of non simply-laced Lie algebras of series so(2n+1)