{ "id": "math/0202041", "version": "v1", "published": "2002-02-05T18:00:11.000Z", "updated": "2002-02-05T18:00:11.000Z", "title": "Representations of n-Lie algebras", "authors": [ "A. S. Dzhumadil'daev" ], "comment": "16 pages, LaTeX", "categories": [ "math.RT", "math-ph", "math.MP", "math.QA" ], "abstract": "Let $V_n=$ be a vector products n-Lie algebra with n-Lie commutator $[e_1,...,\\hat{e_i},...,e_{n+1}]=(-1)^ie_i$ over the field of complex numbers. Any finite-dimensional n-Lie $V_n$-module is completely reducible. Any finite-dimensional irreducible n-Lie $V_n$-module is isomorphic to a n-Lie extension of $so_{n+1}$-module with highest weight $t\\pi_1$ for some nonnegative integer t.", "revisions": [ { "version": "v1", "updated": "2002-02-05T18:00:11.000Z" } ], "analyses": { "subjects": [ "17B10", "22E70" ], "keywords": [ "representations", "vector products n-lie algebra", "complex numbers", "highest weight", "n-lie commutator" ], "note": { "typesetting": "LaTeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......2041D" } } }