arXiv Analytics

Sign in

arXiv:math/0201317 [math.PR]AbstractReferencesReviewsResources

Superdiffusivity of asymmetric exclusion process in dimensions one and two

C. Landim, J. Quastel, M. Salmhofer, H. T. Yau

Published 2002-01-31Version 1

We prove that the diffusion coefficient for the asymmetric exclusion process diverges at least as fast as $t^{1/4}$ in dimension $d=1$ and $(\log t)^{1/2}$ in $d=2$. The method applies to nearest and non-nearest neighbor asymmetric exclusion processes.

Related articles: Most relevant | Search more
arXiv:math/0605266 [math.PR] (Published 2006-05-10, updated 2006-10-23)
$t^{1/3}$ Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on $\mathbb Z$
arXiv:math/0410183 [math.PR] (Published 2004-10-06)
Superdiffusivity of occupation-time variance in 2-dimensional asymmetric processes with density 1/2
arXiv:math/0511249 [math.PR] (Published 2005-11-10, updated 2007-03-01)
Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process