{ "id": "math/0201317", "version": "v1", "published": "2002-01-31T17:41:50.000Z", "updated": "2002-01-31T17:41:50.000Z", "title": "Superdiffusivity of asymmetric exclusion process in dimensions one and two", "authors": [ "C. Landim", "J. Quastel", "M. Salmhofer", "H. T. Yau" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We prove that the diffusion coefficient for the asymmetric exclusion process diverges at least as fast as $t^{1/4}$ in dimension $d=1$ and $(\\log t)^{1/2}$ in $d=2$. The method applies to nearest and non-nearest neighbor asymmetric exclusion processes.", "revisions": [ { "version": "v1", "updated": "2002-01-31T17:41:50.000Z" } ], "analyses": { "subjects": [ "60K35", "82C20" ], "keywords": [ "non-nearest neighbor asymmetric exclusion processes", "superdiffusivity", "asymmetric exclusion process diverges", "diffusion coefficient", "method applies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......1317L" } } }