arXiv Analytics

Sign in

arXiv:math/0111304 [math.RT]AbstractReferencesReviewsResources

The Plancherel decomposition for a reductive symmetric space II. Representation theory

E. P. van den Ban, H. Schlichtkrull

Published 2001-11-29, updated 2004-11-25Version 4

We obtain the Plancherel decomposition for a reductive symmetric space in the sense of representation theory. Our starting point is the Plancherel formula for spherical Schwartz functions, obtained in part I (math.RT/0107063). The formula for Schwartz functions involves Eisenstein integrals obtained by a residual calculus. In the present paper we identify these integrals as matrix coefficients of the generalized principal series.

Comments: 60 pages, LaTeX 2e, revised introduction. Accepted by Invent. Math
Journal: Inventiones Mathematicae 161 (3) 2005, 567 - 628
Categories: math.RT
Subjects: 22E30, 22E46
Related articles: Most relevant | Search more
arXiv:math/0107063 [math.RT] (Published 2001-07-09, updated 2004-11-25)
The Plancherel decomposition for a reductive symmetric space I. Spherical functions
arXiv:math/0302232 [math.RT] (Published 2003-02-19, updated 2007-03-13)
A Paley-Wiener theorem for reductive symmetric spaces
arXiv:math/0410032 [math.RT] (Published 2004-10-02)
Geometric Methods in Representation Theory