{ "id": "math/0111304", "version": "v4", "published": "2001-11-29T16:17:15.000Z", "updated": "2004-11-25T12:45:55.000Z", "title": "The Plancherel decomposition for a reductive symmetric space II. Representation theory", "authors": [ "E. P. van den Ban", "H. Schlichtkrull" ], "comment": "60 pages, LaTeX 2e, revised introduction. Accepted by Invent. Math", "journal": "Inventiones Mathematicae 161 (3) 2005, 567 - 628", "doi": "10.1007/s00222-004-0432-x", "categories": [ "math.RT" ], "abstract": "We obtain the Plancherel decomposition for a reductive symmetric space in the sense of representation theory. Our starting point is the Plancherel formula for spherical Schwartz functions, obtained in part I (math.RT/0107063). The formula for Schwartz functions involves Eisenstein integrals obtained by a residual calculus. In the present paper we identify these integrals as matrix coefficients of the generalized principal series.", "revisions": [ { "version": "v4", "updated": "2004-11-25T12:45:55.000Z" } ], "analyses": { "subjects": [ "22E30", "22E46" ], "keywords": [ "reductive symmetric space", "plancherel decomposition", "representation theory", "generalized principal series", "matrix coefficients" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2005, "month": "Apr", "volume": 161, "number": 3, "pages": 567 }, "note": { "typesetting": "LaTeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005InMat.161..567V" } } }