arXiv Analytics

Sign in

arXiv:math/0110190 [math.RT]AbstractReferencesReviewsResources

Calogero-Moser space and Kostka polynomials

Michael Finkelberg, Victor Ginzburg

Published 2001-10-17, updated 2001-10-18Version 2

We consider the canonical map from the Calogero-Moser space to symmetric powers of the affine line, sending conjugacy classes of pairs of n by n matrices to their eigenvalues. We show that the character of a natural C^*-action on the scheme-theoretic zero fiber of this map is given by Kostka polynomials.

Related articles: Most relevant | Search more
arXiv:2112.12405 [math.RT] (Published 2021-12-23, updated 2022-01-12)
Automorphisms and symplectic leaves of Calogero-Moser spaces
arXiv:2112.13684 [math.RT] (Published 2021-12-23, updated 2022-01-12)
Calogero-Moser spaces vs unipotent representations
arXiv:2303.15596 [math.RT] (Published 2023-03-27)
Symmetric Powers