arXiv:math/0107173 [math.RT]AbstractReferencesReviewsResources
K^F-invariants in irreducible representations of G^F, when G=GL_n
Published 2001-07-24, updated 2002-01-25Version 2
Using a general result of Lusztig, we give explicit formulas for the dimensions of K^F-invariants in irreducible representations of G^F, when G=GL_n, F:G->G is a Frobenius map, and K is an F-stable subgroup of finite index in G^theta for some involution theta:G->G commuting with F. The proofs use some combinatorial facts about characters of symmetric groups.
Comments: Revised version, 38 pages; same content, improved exposition
Journal: J. Algebra 261 (2003), no. 1, 102--144
Keywords: irreducible representations, general result, explicit formulas, frobenius map, finite index
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1507.07410 [math.RT] (Published 2015-07-27)
Irreducible representations of unipotent subgroups of symplectic and unitary groups defined over rings
arXiv:math/9810109 [math.RT] (Published 1998-10-17)
Irreducible representations of solvable Lie superalgebras
arXiv:0807.0901 [math.RT] (Published 2008-07-06)
Simple modules over factorpowers