{ "id": "math/0107173", "version": "v2", "published": "2001-07-24T07:03:07.000Z", "updated": "2002-01-25T05:08:41.000Z", "title": "K^F-invariants in irreducible representations of G^F, when G=GL_n", "authors": [ "Anthony Henderson" ], "comment": "Revised version, 38 pages; same content, improved exposition", "journal": "J. Algebra 261 (2003), no. 1, 102--144", "categories": [ "math.RT", "math.CO" ], "abstract": "Using a general result of Lusztig, we give explicit formulas for the dimensions of K^F-invariants in irreducible representations of G^F, when G=GL_n, F:G->G is a Frobenius map, and K is an F-stable subgroup of finite index in G^theta for some involution theta:G->G commuting with F. The proofs use some combinatorial facts about characters of symmetric groups.", "revisions": [ { "version": "v2", "updated": "2002-01-25T05:08:41.000Z" } ], "analyses": { "subjects": [ "20G40", "20C15" ], "keywords": [ "irreducible representations", "general result", "explicit formulas", "frobenius map", "finite index" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......7173H" } } }