arXiv:math/0106057 [math.RT]AbstractReferencesReviewsResources
ad-Nilpotent ideals of a Borel subalgebra II
Published 2001-06-08, updated 2001-12-17Version 2
We provide an explicit bijection between the ad-nilpotent ideals of a Borel subalgebra of a simple Lie algebra g and the orbits of \check{Q}/(h+1)\check{Q} under the Weyl group (\check{Q} being the coroot lattice and h the Coxeter number of g). From this result we deduce in a uniform way a counting formula for the ad-nilpotent ideals.
Comments: AMS-TeX file, 9 pages; revised version. To appear in Journal of Algebra
Journal: J. Algebra 258 (2002), no. 1, 112--121.
Categories: math.RT
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1805.02057 [math.RT] (Published 2018-05-05)
Abelian ideals of a Borel subalgebra and root systems, II
arXiv:1512.08092 [math.RT] (Published 2015-12-26)
Normalisers of abelian ideals of a Borel subalgebra and $\mathbb Z$-gradings of a simple Lie algebra
ad-nilpotent ideals of a Borel subalgebra III