arXiv:1512.08092 [math.RT]AbstractReferencesReviewsResources
Normalisers of abelian ideals of a Borel subalgebra and $\mathbb Z$-gradings of a simple Lie algebra
Published 2015-12-26Version 1
Let $\mathfrak g$ be a simple Lie algebra and $\mathfrak{Ab}$ the poset of all abelian ideals of a fixed Borel subalgebra of $\mathfrak g$. If $\mathfrak a\in\mathfrak{Ab}$, then the normaliser of $\mathfrak a$ is a standard parabolic subalgebra of $\mathfrak g$. We give an explicit description of the normaliser for a class of abelian ideals that includes all maximal abelian ideals. We also elaborate on a relationship between abelian ideals and $\mathbb Z$-gradings of $\mathfrak g$ associated with their normalisers.
Comments: 13 pp
Journal: J. Lie Theory, 26 (2016), 659--672
Categories: math.RT
Keywords: simple lie algebra, normaliser, maximal abelian ideals, standard parabolic subalgebra, explicit description
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1505.00653 [math.RT] (Published 2015-05-04)
Minimal inversion complete sets and maximal abelian ideals
arXiv:1311.3170 [math.RT] (Published 2013-11-13)
The Dynkin index and sl(2)-subalgebras of simple Lie algebras
arXiv:1805.02057 [math.RT] (Published 2018-05-05)
Abelian ideals of a Borel subalgebra and root systems, II