arXiv:math/0104093 [math.CA]AbstractReferencesReviewsResources
Spectral and Tiling properties of the Unit Cube
Published 2001-04-08Version 1
Let $\Q=[0,1)^d$ denote the unit cube in $d$-dimensional Euclidean space \Rd and let \T be a discrete subset of \Rd. We show that the exponentials $e_t(x):=exp(i2\pi tx)$, $t\in\T$ form an othonormal basis for $L^2(\Q)$ if and only if the translates $\Q+t$, $t\in\T$ form a tiling of \Rd.
Journal: International Math Research Notices, (1998), Number 16, pp. 819-828
Categories: math.CA
Keywords: unit cube, tiling properties, dimensional euclidean space, othonormal basis, discrete subset
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2003.01189 [math.CA] (Published 2020-03-02)
A Szemerédi-type theorem for subsets of the unit cube
arXiv:1904.12276 [math.CA] (Published 2019-04-28)
On Lebesgue null sets
arXiv:math/0703188 [math.CA] (Published 2007-03-07)
On quasiplanes in Euclidean spaces