{ "id": "math/0104093", "version": "v1", "published": "2001-04-08T05:03:44.000Z", "updated": "2001-04-08T05:03:44.000Z", "title": "Spectral and Tiling properties of the Unit Cube", "authors": [ "Alex Iosevich", "Steen Pedersen" ], "journal": "International Math Research Notices, (1998), Number 16, pp. 819-828", "categories": [ "math.CA" ], "abstract": "Let $\\Q=[0,1)^d$ denote the unit cube in $d$-dimensional Euclidean space \\Rd and let \\T be a discrete subset of \\Rd. We show that the exponentials $e_t(x):=exp(i2\\pi tx)$, $t\\in\\T$ form an othonormal basis for $L^2(\\Q)$ if and only if the translates $\\Q+t$, $t\\in\\T$ form a tiling of \\Rd.", "revisions": [ { "version": "v1", "updated": "2001-04-08T05:03:44.000Z" } ], "analyses": { "keywords": [ "unit cube", "tiling properties", "dimensional euclidean space", "othonormal basis", "discrete subset" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }