arXiv Analytics

Sign in

arXiv:math/0012125 [math.OA]AbstractReferencesReviewsResources

Tensor products of C(X)-algebras over C(X)

Etienne Blanchard

Published 2000-12-15, updated 2000-12-19Version 2

Given a Hausdorff compact space X, we study the C^*-(semi)-norms on the algebraic tensor product $A\otimes_{alg,C(X)} B$ of two C(X)-algebras A and B over C(X). In particular, if one of the two C(X)-algebras defines a continuous field of C^*-algebras over X, there exist minimal and maximal C^*-norms on $A\otimes_{alg,C(X)} B$ but there does not exist any C^*-norm on $A\otimes_{alg,C(X)} B$ in general.

Comments: 8 pages
Journal: Ast'erisque 232 [1995], 81--92
Categories: math.OA
Subjects: 46L05, 46M05
Related articles: Most relevant | Search more
arXiv:math/0101099 [math.OA] (Published 2001-01-11)
Continuous Fields of $C^*$-Algebras Arising from Extensions of Tensor $C^*$-Categories
arXiv:1309.7856 [math.OA] (Published 2013-09-30, updated 2019-12-21)
Algebraic tensor products and internal homs of noncommutative L^p-spaces
arXiv:2010.00750 [math.OA] (Published 2020-10-02)
A topological invariant for continuous fields of Cuntz algebras II