{ "id": "math/0012125", "version": "v2", "published": "2000-12-15T12:54:56.000Z", "updated": "2000-12-19T10:24:46.000Z", "title": "Tensor products of C(X)-algebras over C(X)", "authors": [ "Etienne Blanchard" ], "comment": "8 pages", "journal": "Ast'erisque 232 [1995], 81--92", "categories": [ "math.OA" ], "abstract": "Given a Hausdorff compact space X, we study the C^*-(semi)-norms on the algebraic tensor product $A\\otimes_{alg,C(X)} B$ of two C(X)-algebras A and B over C(X). In particular, if one of the two C(X)-algebras defines a continuous field of C^*-algebras over X, there exist minimal and maximal C^*-norms on $A\\otimes_{alg,C(X)} B$ but there does not exist any C^*-norm on $A\\otimes_{alg,C(X)} B$ in general.", "revisions": [ { "version": "v2", "updated": "2000-12-19T10:24:46.000Z" } ], "analyses": { "subjects": [ "46L05", "46M05" ], "keywords": [ "hausdorff compact space", "algebraic tensor product", "continuous field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....12125B" } } }