arXiv:math-ph/0312030AbstractReferencesReviewsResources
Good Gradings of Simple Lie Algebras
Published 2003-12-10, updated 2004-12-17Version 2
We study and give a complete classification of good $\ZZ$-gradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.
Comments: needs AMS trans2-1.cls
Journal: Amer. Math. Soc. Transl. (2) vol 213 (2005), 85-104
Keywords: simple lie algebras, simple finite-dimensional lie algebras, affine lie algebras, quantum hamiltonian reduction, complete classification
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2212.14761 [math-ph] (Published 2022-12-30)
Split Casimir operator for simple Lie algebras in the cube of $\mathsf{ad}$-representation and Vogel parameters
arXiv:1507.04265 [math-ph] (Published 2015-07-15)
Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero-Moser systems and KZB equations
arXiv:1101.6043 [math-ph] (Published 2011-01-31)
Branching rules for Weyl group orbits of simple Lie algebras B(n), C(n) and D(n)