arXiv:1101.6043 [math-ph]AbstractReferencesReviewsResources
Branching rules for Weyl group orbits of simple Lie algebras B(n), C(n) and D(n)
Published 2011-01-31Version 1
The orbits of Weyl groups W(B(n)), W(C(n)) and W(D(n)) of the simple Lie algebras B(n), C(n) and D(n) are reduced to the union of the orbits of Weyl groups of the maximal reductive subalgebras of B(n), C(n) and D(n). Matrices transforming points of W(B(n)), W(C(n)) and W(D(n)) orbits into points of subalgebra orbits are listed for all cases n<=8 and for the infinite series of algebra-subalgebra pairs B(n) - B(n-1) x U(1), B(n) - D(n), B(n) - B(n-k) x D(k), B(n) - A(1), C(n) - C(n-k) x C(k), C(n) - A(n-1) x U(1), D(n) - A(n-1) x U(1), D(n) - D(n-1) x U(1), D(n) -B(n-1), D(n) - B(n-k-1) x B(k), D(n) -D(n-k) x D(k). Numerous special cases and examples are shown.
Comments: 31 pages, accepted in J. Phys. A : Math. Theor
Keywords: simple lie algebras, weyl group orbits, branching rules, matrices transforming points, subalgebra orbits
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0909.2337 [math-ph] (Published 2009-09-14)
Branching rules for the Weyl group orbits of the Lie algebra A(n)
arXiv:2102.08258 [math-ph] (Published 2021-02-16)
Split Casimir operator for simple Lie algebras, solutions of Yang-Baxter equations and Vogel parameters
arXiv:1507.04265 [math-ph] (Published 2015-07-15)
Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero-Moser systems and KZB equations