arXiv Analytics

Sign in

arXiv:0909.2337 [math-ph]AbstractReferencesReviewsResources

Branching rules for the Weyl group orbits of the Lie algebra A(n)

M. Larouche, M. Nesterenko, J. Patera

Published 2009-09-14Version 1

The orbits of Weyl groups W(A(n)) of simple A(n) type Lie algebras are reduced to the union of orbits of the Weyl groups of maximal reductive subalgebras of A(n). Matrices transforming points of the orbits of W(An) into points of subalgebra orbits are listed for all cases n<=8 and for the infinite series of algebra-subalgebra pairs A(n) - A(n-k-1) x A(k) x U(1), A(2n) - B(n), A(2n-1) - C(n), A(2n-1) - D(n). Numerous special cases and examples are shown.

Comments: 14 pages, submitted to J. Phys. A : Math. Theor
Journal: J. Phys. A: Math. Theor. 42 (2009) 485203 (15 pp.)
Categories: math-ph, math.MP, math.RT
Subjects: 20F55, 22E46
Related articles: Most relevant | Search more
arXiv:1101.6043 [math-ph] (Published 2011-01-31)
Branching rules for Weyl group orbits of simple Lie algebras B(n), C(n) and D(n)
arXiv:math-ph/0505037 (Published 2005-05-11)
New branching rules induced by plethysm
arXiv:math-ph/0111020 (Published 2001-11-11, updated 2002-03-15)
Branching rules of semi-simple Lie algebras using affine extensions