arXiv Analytics

Sign in

arXiv:cond-mat/0611646AbstractReferencesReviewsResources

On the extended Kolmogorov-Nagumo information-entropy theory, the q -> 1/q duality and its possible implications for a non-extensive two dimensional Ising model

Marco Masi

Published 2006-11-25, updated 2006-12-09Version 2

The aim of this paper is to investigate the q -> 1/q duality in an information-entropy theory of all q-generalized entropy functionals (Tsallis, Renyi and Sharma-Mittal measures) in the light of a representation based on generalized exponential and logarithm functions subjected to Kolmogorov's and Nagumo's averaging. We show that it is precisely in this representation that the form invariance of all entropy functionals is maintained under the action of this duality. The generalized partition function also results to be a scalar invariant under the q -> 1/q transformation which can be interpreted as a non-extensive two dimensional Ising model duality between systems governed by two different power law long-range interactions and temperatures. This does not hold only for Tsallis statistics, but is a characteristic feature of all stationary distributions described by q-exponential Boltzmann factors.

Related articles: Most relevant | Search more
arXiv:cond-mat/9809366 (Published 1998-09-27)
Economic returns of research: the Pareto law and its implications
arXiv:cond-mat/0102032 (Published 2001-02-02)
The Phase Dynamics of Earthquakes: Implications for Forecasting in Southern California
arXiv:cond-mat/0506578 (Published 2005-06-22)
Critical Dynamics of Dimers: Implications for the Glass Transition