arXiv:cond-mat/0401209AbstractReferencesReviewsResources
Random Walks on Hyperspheres of Arbitrary Dimensions
Published 2004-01-13Version 1
We consider random walks on the surface of the sphere $S_{n-1}$ ($n \geq 2$) of the $n$-dimensional Euclidean space $E_n$, in short a hypersphere. By solving the diffusion equation in $S_{n-1}$ we show that the usual law $<r^2 > \varpropto t $ valid in $E_{n-1}$ should be replaced in $S_{n-1}$ by the generic law $<\cos \theta > \varpropto \exp(-t/\tau)$, where $\theta$ denotes the angular displacement of the walker. More generally one has $<C^{n/2-1}_{L}\cos(\theta)> \varpropto \exp(-t/ \tau(L,n))$ where $C^{n/2-1}_{L}$ a Gegenbauer polynomial. Conjectures concerning random walks on a fractal inscribed in $S_{n-1}$ are given tentatively.
Comments: 10 pages
Journal: J. Phys. A: Math. Gen. 37, 3077 (2004).
Categories: cond-mat.stat-mech
Keywords: arbitrary dimensions, hypersphere, dimensional euclidean space, conjectures concerning random walks, usual law
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0812.3969 [cond-mat.stat-mech] (Published 2008-12-20)
Quantized vortices and superflow in arbitrary dimensions: Structure, energetics and dynamics
arXiv:1208.4888 [cond-mat.stat-mech] (Published 2012-08-24)
Bose - Einstein condensation in arbitrary dimensions
arXiv:1502.01360 [cond-mat.stat-mech] (Published 2015-02-04)
Properties of the Virial Expansion and Equation of State of Ideal Quantum Gases in Arbitrary Dimensions