{ "id": "cond-mat/0401209", "version": "v1", "published": "2004-01-13T10:42:33.000Z", "updated": "2004-01-13T10:42:33.000Z", "title": "Random Walks on Hyperspheres of Arbitrary Dimensions", "authors": [ "Jean-Michel Caillol" ], "comment": "10 pages", "journal": "J. Phys. A: Math. Gen. 37, 3077 (2004).", "doi": "10.1088/0305-4470/37/9/001", "categories": [ "cond-mat.stat-mech" ], "abstract": "We consider random walks on the surface of the sphere $S_{n-1}$ ($n \\geq 2$) of the $n$-dimensional Euclidean space $E_n$, in short a hypersphere. By solving the diffusion equation in $S_{n-1}$ we show that the usual law $ \\varpropto t $ valid in $E_{n-1}$ should be replaced in $S_{n-1}$ by the generic law $<\\cos \\theta > \\varpropto \\exp(-t/\\tau)$, where $\\theta$ denotes the angular displacement of the walker. More generally one has $ \\varpropto \\exp(-t/ \\tau(L,n))$ where $C^{n/2-1}_{L}$ a Gegenbauer polynomial. Conjectures concerning random walks on a fractal inscribed in $S_{n-1}$ are given tentatively.", "revisions": [ { "version": "v1", "updated": "2004-01-13T10:42:33.000Z" } ], "analyses": { "keywords": [ "arbitrary dimensions", "hypersphere", "dimensional euclidean space", "conjectures concerning random walks", "usual law" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2004, "month": "Mar", "volume": 37, "number": 9, "pages": 3077 }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004JPhA...37.3077C" } } }